Multilayer graphene nanoribbon under vertical electric field
نویسندگان
چکیده
منابع مشابه
Graphene nanoribbon field-effect transistor at high bias
Combination of high-mean free path and scaling ability makes graphene nanoribbon (GNR) attractive for application of field-effect transistors and subject of intense research. Here, we study its behaviour at high bias near and after electrical breakdown. Theoretical modelling, Monte Carlo simulation, and experimental approaches are used to calculate net generation rate, ionization coefficient, c...
متن کاملFerromagnetism controlled by electric field in tilted phosphorene nanoribbon
Study on phosphorene nanoribbon was mostly focused on zigzag and armchair structures and no ferromagnetic ground state was observed in these systems. Here, we investigated the magnetic property of tilted black phosphorene nanoribbons (TPNRs) affected by an external electric field. We also studied the edge passivation effect on the magnetism and thermal stability of the nanoribbons. The pure TPN...
متن کاملA computational study of ballistic graphene nanoribbon field effect transistors
A self-consistent solution of Schrödinger equation based on Green’s function formalism coupled to a two-dimensional Poisson’s equation for treating the electrostatics of the device is used to simulate and model the ballistic performance of an armchair edged GNRFET. Our results take into account interactions of third nearest neighbors, as well as relaxation of carbon–carbon bonds in the edges of...
متن کاملTheoretical study of graphene nanoribbon field-effect transistors
Carbon nanoribbons (CNRs) have been recently experimentally and theoretically investigated for different device applications due to their unique electronic properties. In this work, we present a theoretical study of the electronic structure, e.g. bandgap and density of states, of armchair carbon nanoribbons, using both, simple analytical solutions and numerical solutions based on a πorbital tig...
متن کاملTheoretical Study of a Zigzag Graphene Nanoribbon Field Effect Transistor
Graphene nanoribbons with zigzag edges show metallic behavior and are thus considered not appropriate for transistor applications. However, we show that by engineering line defects and using positive substrate impurities one can obtain a suitable effective transport gap at least for analog applications. The transfer and output characteristics of these structures are investigated employing quant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2011
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.3619853